Journal Information
Computational Statistics & Data Analysis
http://www.journals.elsevier.com/computational-statistics-and-data-analysis/
Impact Factor:
1.323
Publisher:
Elsevier
ISSN:
0167-9473
Viewed:
6235
Tracked:
0

Call For Papers
Computational Statistics & Data Analysis (CSDA), the official journal of the International Association of Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of three refereed sections, and a fourth section dedicated to news on statistical computing. The refereed sections are divided into the following subject areas:

I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics, computational econometrics, computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.

II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, econometrics, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.

Statistical methodology includes, but not limited to: bootstrapping, classification techniques, clinical trials, data exploration, density estimation, design of experiments, pattern recognition/image analysis, parametric and nonparametric methods, statistical genetics, Bayesian modeling, outlier detection, robust procedures, cross-validation, functional data, fuzzy statistical analysis, mixture models, model selection and assessment, nonlinear models, partial least squares, latent variable models, structural equation models, supervised learning, signal extraction and filtering, time-series modelling, longitudinal analysis, multilevel analysis and quality control.

III) Special Applications - Manuscripts at the interface of statistics and computing (e.g., comparison of statistical methodologies, computer-assisted instruction for statistics, simulation experiments). Advanced statistical analysis with real applications (economics, social sciences, marketing, psychometrics, chemometrics, signal processing, finance, medical statistics, environmentrics, statistical physics).
Last updated by Dou Sun in 2019-12-04
Related Journals
CCFFull NameImpact FactorPublisherISSN
Computational Optimization and Applications1.899Springer0926-6003
bComputational Linguistics0.721MIT Press0891-2017
Computational Geosciences0.769Springer1420-0597
Journal of Computational Physics2.845Elsevier0021-9991
Journal of Computational Analysis and Applications Springer1521-1398
Computational Visual MediaSpringer2096-0433
Computational Mathematics and Modeling Springer1046-283X
Computational ToxicologyElsevier2468-1113
Computational Materials Science2.644Elsevier0927-0256
Journal of Computational and Applied Mathematics1.883Elsevier0377-0427
Related Conferences
Recommendation