Información de la conferencia
EMC+SIPI 2026: IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity
https://2026.emcsipi.org/Día de Entrega: |
2026-01-16 |
Fecha de Notificación: |
2026-02-27 |
Fecha de Conferencia: |
2026-08-03 |
Ubicación: |
Dallas, Texas, USA |
Vistas: 24 Seguidores: 0 Asistentes: 0
Solicitud de Artículos
Topics of Interest
The IEEE EMC Society’s Technical and Special Committees encompass most but not all of the possible topics of interest. These Committees are responsible for sponsoring Symposium content and reviewing papers within their scope. The Committees, their scopes, and their primary topics of interest are listed below:
TC-1 EMC Management
Personal & Laboratory Accreditation
EMC Education & Awareness
Legal Issues
TC-2 EMC Measurements
Techniques
Test Instrumentation & Facilities
Standards and Regulations
Measurement Uncertainty
TC-3 EMC Environment
Signal Environment
Atmospheric & Manmade Noise
Characterization
TC-4 EM Interference Control
Shielding
Gaskets
Cables
Connectors
Grounding & PCB Layout
TC-5 High Power Electromagnetics
ESD & Transients
EMP
IEMI & Lightning
Geomagnetic Storm EMC
TC-6 Spectrum Engineering
Characterization and Modeling
Design
Adaptive Interference Mitigation
TC-7 Electrical System and Power Electronics EMC
Power Quality
Conducted Emissions and Immunity
Power Conversion
Transportation & EVs
Grid
TC-8 Aeronautics and Space EMC
Aircraft
Atmospheric Environment
Drones
Spacecraft
Missiles
TC-9 Computational Electromagnetics
Modeling & Simulation
Multi-Physics Techniques
Tools
Applications
TC-10 Signal and Power Integrity
Interconnects
Modeling & Characterization
Crosstalk
Jitter
Noise
TC-11 Nanotechnology & Advanced Materials
Nanomaterials & Nanostructures
Smart Materials
TC-12 EMC Wireless Technologies
EMC Planning/Testing/Specifications
Wireless Coexistence
SC-1 Smart Grid EMC
Renewable Generation
Grid Communications
SC-3 Machine Learning and Artificial Intelligence in EMC and SIPI
Deep Neural Networks
Support Vector Machines
Gaussian Process Regression
Bayesian Optimization
Última Actualización Por Dou Sun en 2025-11-26